Topic: Date: _____ -> Dynamics Newton's 1st law: (law of Inertia) If resultant force is zero i.e if forces are balanced then _____ Rest _____ Rest Constant velocity -> Constant velocity. Define Force: ⇒ Force is equal to rate of change of momentum

Topic: Momentum

Date: _

Momentum - It is the product of mass and velocity of a Change in momentum. Change = Finid - initial. object $\Delta = delta/Ch$ $\int = m \times v$ $\Delta f = f_{\rm c} - f_{\rm i}$ <u>Δ</u> *S* "It is amount of motion in $\Delta f = mv - mu$ Example 1 (Speeds up) a body" mass = 7kg > Momentum is a vector quantity. <u>--</u>○→ <u>-</u>=-○ $V=2_{m/s}$ $V=10_{m/s}$ + SI unit kgms' or Ns tue $P \xrightarrow{V = 20 m/s} P$ $\int m_{\rm V}$ $\Delta P = mv - mu$ $mass = 300 \, kg$. $J = 300 \, \pi \, 20$ = 7(10) - 7(2)= 70 - 14 = 6000 kgms1 = 56 kgm51 Example 2 N = 300m/sS= mv (B) → $\int = 20 \times 300$ mass = 20kg 20 m/s=u= Rest v=0 = 6000kgms' i) Calculate change in momentum: Here you can clearly observe both heavior and lighter object has $\Delta P = P_{f} - P_{i}$ some amount of momentum = my _mu 20(0) - 20(20)as they have different velocities. - 400 kgmst * Object is slowing down.

Topic:	Date:
Topic. $3^{arn/ls}$ $3^{arn}/ls$ $3^{arn}/ls$ $3^{arn}/ls$ $3^{arn}/ls$ $3^{arn}/ls$ i $3^{arn}/ls$ i	Date: Force: Rate of change of momentum is called force. $F = \Delta P$ $F = mv - mu$

Topic:	Date:
Impulse: The product of force and	Law of Conservation of momentum:
time of application of force.	· For a closed system/gookted
$F = \Delta P$	system the total momentum
Δł	before collision is equal to the
$F \times \Delta t = \Delta f$	total momentum after collision.
" A lorge force applied for a	1 2 1 2
Short duration can bring in a	
Small change in momentum as	Before collision After collision
a small force would if applied	
for a lorger duration.	⇒Total momentum before = Total momentum afte
J	Collision Collision.
* Force is Rate of change of momentum.	
0	$f_{1} + f_{2} = f_{1} + f_{2}$
F = my - mu	
Ł	$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
F = m(v - u)	U, U, = Initial velocity V, V2 = final velocity.
t	* Make sure to use
F=ma	correct signs for velocity
· · · · · · · · · · · · · · · · · · ·	
2	

Topic: _ Date: ____ L = 4.3m/s= 1.51 (to reach the ground) iii) time of impact is 125 ms calculate force exerted on He ground during $\gamma \uparrow \gamma \uparrow \gamma$ 7m/5 impact. $F = \underbrace{\mathcal{N}}_{k}$ A ball started at an initial velocity of 4.3m/s and took 1.5s to 12.5 710-3 reach the ground i) Calculate final velocity as : t = 104.8 N hits the ground? V = u + a ty = 43 + (9.81)(1.51)V = 19.1 m/s il) Given that it rebounds with the speed of 7 m/s colculate the change in momentum during He impact. mass = (50g) $M^{\circ} = my - mu$ |0.05|(+7) - (0.05)(-14.1)

Topic: 2 Date:_ $K \mathcal{E} = \rho^2$ N 1000/1 2m зo How to prove this? J30° 10 - $\frac{1}{2}m\chi^2 = kE$ Calculate AP for the projectile motion P = mv1) DP (in the horizontal plane) $\frac{r}{r} = v$ Since harizantal velocity remains constant throughout. DP (In horizontal plane = 0) $\frac{1}{2}\rho_{v} = k \epsilon$ ② Change in momentum in vertical plane. - Sm/s 10 Sin 30 $\frac{1}{2} f\left(\frac{\rho}{m}\right) = K \mathcal{E}$ = 5 m/s - 10 5: ,30 $\frac{K\mathcal{E}}{2m}^{2}$ mass = 20 kg $\bigwedge f = f - f_i$ = 20(-5) - (20)(+5)F=ma = -200 Ns / kgms" *f* = mv * CAIE they take final direction as $\Delta f = Ft$ positive. $\Delta P = f_{f} - P_{i}$ $f_{mpulse} = \Delta P = Ft$

How to obtain a relationship blw momentum	20m/1	12 m/s
of an object (P) and its (KE)	2 (A) ²	J B
$P_{rave} = P^2$		
2 m	Speed of Approach = 20-12	2=8
	SOA = x - y	
-> Principle of Conservation of momentum/	If Particles are travelling in	opposite directio
Law of conservation of momentum	we need to add the values.	
	If Porticle are travelling in Sa	me direction
The nature of collision b/w two bodies conbe	we subtract the values.	
classified either as	/ m/s	11 m/s
i) Elashe Collisian	(A) ²	a B
ii) In Elastic Callisian	Speed of separation = 9 + 11 = 2	20ms ⁻ '
	SOS = x + y	
The last of the second		
-> the momentum of System remains conserved.	E	
The KE of the system remains conserved.		Ja
-> The total Energy of a system also remains conserve		
-> The speed of approch before collision =		
Speed of Separation	Speed of Separation = 12 - 5	j - 7ms
$\xrightarrow{7_{m/s}} \xrightarrow{3_{m/s}}$	505 = y - X	
	If particles are moving in opp	posite direction we
Speed of Approach = 7+3 = 10	add them	
Speed of - x + y	If particles are moving in s	same direction
Approoch .	we subtract them.	

Topic: Date: Q) Example of how to apply property of $\chi = -63 \, \text{m/s}$ y = 303 m/s Elastic collision to solve questions. 5 kg____ Negative answer implies A is Positive answer implies A B travelling apposte to the direction that B gos in some direction 200m/s ---before collision as marked on diagram. orignially marked on diagram. $\mathbb{Q} \xrightarrow{2^{k}g} \xrightarrow{7^{k}g} \xrightarrow{2^{k}g} \xrightarrow{2^{k}g$ 2 kg B 5 kg Before After. After Collision. * Given that collision is Elastic. Elastic Collision) Form an equation based on Find 2 equations to find x and y SOA = SOS200+40 = 2 +y SOA = SOS $\widehat{}$ 10 = x + y $240 = x + y \longrightarrow 1$ 2) Principle of conservation of momentum. (2) form an equation based on Priciple of (2)(7) + (2)(-3) = (2)(-2) + 2(4)conservation of momentum. 14 - 6 = -2x + 2y $8 = -2 \times + 2y$ $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $\chi = 3 m/s$ $\chi = 7 m/s$ 5(200) + 2(-40) = 5(-x) + 2(y) $1000 - 80 = 5_{\chi} - 2_{\chi}$ Conclusion: For identical masses performing Elastic 920 = -5x + 2y Collision speeds will get interchanged. i.e Initial speed of A becomes find speed of B and Initial speed of B become find Speed of A.

Topic:	Date:
Queshon?	Jn Elastic Collision:
For identical mosses performing elastic collision,	* Momentum of System remains conserved.
m kg m kg m kg	* Total Energy of System remains conserved.
A B H B	* Since KE is not conserved
	Hence $K \in (after collision) < K \in (Before collision)$
Similar Situation can occur in Snooker ball	SOA 7 SOS
	Example: Rest
ØRST	Before After
Note: Momentum of first balk transfers into the lost	
ball hence all bells in the middle remain at	i) Calculate "v"?
rest only the first and last ball moves back and	Principle of Conservation of momentum.
Porth. [This is called Newton Cradke]	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
	(2)(1.6) + 2(0) = (2)(v) + (2)(0.9)
	V = 0.7 m/s
	ii) Show that this is In Elastic Collision?
	In terms of KE
	* KE before collision.
	$\frac{1}{2}(2)(16)^2 + 0 = 2.565$ Since KE is
	KE of system after collision. lost its Incl
	$\frac{1}{2} (2 (0.7)^{2} + \frac{1}{2} (2) (0.9)^{2} = (1.3 \text{ J})^{\frac{1}{2}} \text{ tic}$
2	Interms of speed of approach
9 <u> </u>	50A before = 1.6 m/s
3 	$50S_{after} = 0.9 - 0.7 = 0.2 m/s$
	Dince JUH # JUS 10 inclashe.

Topic: Date: Example : 3 Example 2 30kg 2m/s 3m/s 7 kg 2049 5kg Zkg Before After Calculate change in momentum Rest of A'r 20 m/s Cloin Compine Given that the particles joins up after $\Delta P A = P_{f} - P_{i} \implies 20(2) - (20)(5)$ collision and they move with a common velocity (v) and determine weather collision is Elastic - GONS or In Elastic ii) Calculate change in momentum + Principle of Conservation Å momentum. δ Ğ $(5)(2^{\circ}) + (2)(0) =$ (5+2)v $P_{t} - P_{i} \Rightarrow (30)(3) - (30)(1)$ v = 14.3 m/s iii) From the above example how can we conclude that * Nature of collision: the momentum of the system SOA before collision = 20 m/s remains conserved? SOS after collision = 0 m/c oss in momentum of A Ans they * Since have joined up . Seperation not to the equal Js gain in hence Lero) possible momentum of B? 50A 7 505 Inclastic hence $\Delta f_{\rm R} = -\Delta f_{\rm R}$ →Note : Whenever two object join up and more Note: Change in momentum of A is Common velocity together with a conclude we can to the opposite change in equal (without working) that the nature of collision will be momentum of B. Inclastic.

Topic:

Date:_

vi) Show that during collision, force Sketch a velocity time graph before during and after Collision for A and B. which A applies on B is equal and opposite to force which B applies on A Ans: 5 $\Delta P_{A} = -\Delta P_{B}$ Since DP = F * t : DPA = FA * to 3 2. $F_{\beta \times t_{\beta}} = F_{\beta \times t_{\beta}}$ 1 Since ta = to (Because both Before During After particles collide for the Some time hence time can be Concelled out) $F_{A \times tA} = F_{B \times tB}$ v) Sketch momentum time graph during and After Collision $F_A = -F_B (Proved !!!)$ 101. 80 > Newton's third Raw 60 40 * To Every action there is an 20 fire equal and opposite reaction 1 mark. During Afto Before ASLevel: The forces are equal in magnitude, The two forces are opposite in direction. The two forces act on different bodies FA = -Fn🤮 🗍 🛇 0309 2656780 🞯 mahad__amer 🛛 🖾 mahadamerchaudhry@gmail.com

Topic: _____

Date:

Q) A ball falls vertically and strikes a metal plate. It How to apply law of conservation of momentum in two dimentions. $(A) \stackrel{B}{\longrightarrow} (B) \stackrel{20^{\circ}}{\longrightarrow} (B) \stackrel{20^$ rebounds from the plate as shown 3kg (A) <u>1.m√i</u> Rest **(B)** 2kg 3 m/s After. Sm/s Before _0.8 m/s re bound Apply law of conservation of momentum ⇒ Explain how principle of conservation of to find it and iQ! momentum applies in this case? (3) 1) low in horizontal Plane. $3(1) + 2(0) = (3) \times \cos 0 + (2)(0 \cdot 8 \cos 20)$ * The ball losses momentum upon $3 = \pi \cos 0 + 1.5$ the impact. $\chi Cos Q = 0.5$ (1) * This loss in momentum is transford Vertical Plane: gained by the metal plate. $0 + 0 = 3 \times Sin Q + 2 (-0.8 Sin 20)$ * Therefore of though the momentum 32 Sin Q = 2(0.8 Sin 20) of the ball changes but the 3iSinO = 0.55momentum of the system that z Sin Q = 0.18 2 is Ball + metalplote remains To find Q > cq2 - eq 1 Conserved. $Q = 20^{\circ}$ ~ Sin Q = 0.18 $\mathcal{L}CosO$ $O\cdot 5$ find a? Tan 0 = 0.18

Topic:

Date: ___

Find 2 by Substituting Q in the effect of Each other. any equation Calculate the Recoil velocity of the Gyn? tiv Principle of conservation of Methord momentum. $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ How to apply Principle of conservation 0 + 0 = 0.005(300) + 2(-x) $\chi = 0.75 m/s$ of momentum in situation where initial momentum of the system is zero. Mν 0.005 kg Rest 249 MV Q) Revolver with a bullet in it initially 2(x) = (0.005)(300)both at Rest. Vm/s____ [→ 300 m/s 0.75 Z = (recoil velocity The above working can also be donc using ratio method. -> Since the initial momentum is zero for LOCOM to be valid, According to P=mv, m and velocity_ the final momentum of system must are inversing Propotional to each also remoins zero. Other hence -> This is only possible if the 2 $M = 2k_g$ $m = 0.005k_g$ Since mass of gun is 400 times heavier bodies have equal momentum in apposite then bullet hence velocity will be 400 times less. $\frac{300}{400} = 0.75 \text{ m/s}$ direction so that they cancel out 🧟 🗍 🛇 0309 2656780 💿 mahad__amer 🛛 🖾 mahadamerchaudhry@gmail.com

Next slide

Topic: Date: _ Example Example. 0·1kg **→** ∨ VM [0×1 Show that Q calculate Ratio of KEg + KEB Μ V Step1 = $M_{ass gun}$ 10 = 100mass bullet 0.1 1 $m_1u_1 + m_2u_L = m_1v_1 + m_2v_L$ 0 + 0 = M(-v) + mvSince $m \propto \frac{1}{V}$ P = mv+MV = mvΜ Vgun = 1= Y 100 m v bullet Step 3 Since ratio of KE depends Show 11 on ratio of relocity. $k \in of gun = \frac{V}{V}$ KEgum > 100 KE of bullet KE byllet $KE_{g} = \frac{1}{2} M(v)^{2}$ $|\langle \mathcal{E}_{|} = \frac{1}{2} m v^{2}$ $= \frac{1}{2} MV V \qquad \therefore MV = mV$ 12 m 4 V KEg V 132 -> KE of 2 bodies depends upon ratio of there velocities.

Date: _____

Topic:		Date:
	_	

Date:

Q) mass of oxygen atom is b) Hence calculate speed of Y? = 16 Relative atomic moss. $O = 4_{u} (|O_{\times 10}^{-13}) + (216_{u})(-b)$ Actual mass of oxygen atom | 6u $b(216\%) = 4\%(10\%)^{-13}$ * where u is unified atomic mass Lu = 1.60×10²⁷ kg In data sheet. $216b = 4 \times 1.0 \times 10^{-13}$ b _ 4 x 1.0x 10-13 Mass of Oxygen in kg 2.7 ×10-26 kg 1.9 × 10 Q) mass of Helium atom 4 => 4 (1.66 × 10-27) ⇒ 6.6×10-27 A nucleus × (220 u) is initially at rest. It splits into 2 fragment Y and Z of masses 216 u and 4y respectively as shown (220u) Rest . Z <u>a ~/s</u> (216m) a) Given that KE of Z is 1.0 × 1013 J colculate speed of Z? $\frac{1}{2} m v^{2} \frac{1}{2} (4u) (a)^{2} = 1.0 \times 10^{-13}$

🗍 🛇 0309 2656780 💿 mahad__amer 🛛 🖾 mahadamerchaudhry@gmail.com

Topic: _____

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date:

Topic:	Date: